Lesson 1ª


 

 

 

 

 

 

 

Operations with Algebraic Fractions


Adding and subtracting algebraic fractions:
10.1  Calculate the result of the sum:

operacionesalgebraicasconfracciones

1st.  Calculate the least common multiple (l.c.m.) of the denominators: We find that the l.c.m.(2, 3, 4) = 12
2nd. Divide the l.c.m. by each denominator (the value below the fraction), then, multiply the quotient times the numerator (the value above the fraction):

operacionesalgebraicasconfracciones

 

10.2  Calculate the value of:

operacionesalgebraicasconfracciones Answer: operacionesalgebraicasconfracciones Solution: operacionesalgebraicasconfracciones

 

1st.  Calculate the l.c.m. (3, 4 and 5) = 60

2nd. Divide 60 by each denominator, then, multiply the quotient times the numerator. Write its corresponding sign in front.

operacionesalgebraicasconfracciones

10.3 Calculate the sum:

operacionesalgebraicasconfracciones Answer: operacionesalgebraicasconfracciones

Solution:
When you find a whole number (no denominator), you can use 1 as a denominator to make things easier. Dividing or multiplying a number by 1 results in the same number, but it sometimes clears any doubts:

operacionesalgebraicasconfracciones

The l.c.m. of the denominators is 5. Each denominator is divided by this number, then, multiply the quotient times the numerator.

10.4 Calculate:

operacionesalgebraicasconfracciones Answer: operacionesalgebraicasconfracciones

10.5 Calculate:

operacionesalgebraicasconfracciones Answer: operacionesalgebraicasconfracciones

Solution:

Working with letter variables is simple. The l.c.m. of ‘a’ and ‘b’ is ‘ab’. These two letter variables have nothing in common. Imagine that ‘a’ is equal to 7 and ‘b’ is equal to 5. Since 7 and 5 are prime numbers, they have nothing in common, their l.c.m. operacionesalgebraicasconfraccionesis the same as the l.c.m. operacionesalgebraicasconfracciones

Each denominator is divided by this number, then, we multiply the quotient times the numerator:

operacionesalgebraicasconfracciones

Dividing operacionesalgebraicasconfraccionesis like dividingoperacionesalgebraicasconfraccionesimagining that 'a' = 7 and 'b' = 5.
We simplify the equal factors in the numerator and denominator and we will get:

operacionesalgebraicasconfracciones

10.6 Calculate:

operacionesalgebraicasconfracciones Answer: operacionesalgebraicasconfracciones

Solution:
This exercise can be written like this:

operacionesalgebraicasconfracciones

The l.c.m. of the denominators is 'xy'
We divide this value by each denominator, then, multiply the quotient times the numerator:

operacionesalgebraicasconfracciones

We mustn't simplify the xy in the numerator with the xy in the denominator because the numerator is adding. To be able to simplify terms, they need to be multiplying.

10.7 Calculate the sum:

operacionesalgebraicasconfracciones Answer: operacionesalgebraicasconfracciones

Solution:
The l.c.m. of these denominators is ‘ab’. We divide this value by each denominator, then, multiply the quotient times the numerator:

operacionesalgebraicasconfracciones

We find that the numerator is the square of the difference between both numbers:

operacionesalgebraicasconfracciones

10.8     Calculate:

operacionesalgebraicasconfracciones Answer: operacionesalgebraicasconfracciones

Solution:
The denominator for both will be (x – y).
We multiply the numerator 1 by (x – y). I multiply the second numerator by 1 because  (x – y) divided by itself equals 1:

Solution:

operacionesalgebraicasconfracciones

I simplify (reduce) similar terms in the numerator:  

operacionesalgebraicasconfracciones